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Two-dimensional projections of a hypercube

Guillermo Abramson* and Damia´n H. Zanette†
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We present a method to project a hypercube of arbitrary dimension on the plane, in such a way as to
preserve, as well as possible, the distribution of distances between vertices. The method relies on a Monte
Carlo optimization procedure that minimizes the squared difference between distances in the plane and in the
hypercube, appropriately weighted. The plane projections provide a convenient way of visualization for dy-
namical processes taking place on the hypercube.
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Dynamical models where the state of a system is rep
sented by an ordered array of binary variables are ubiqui
in statistical physics, especially in its interdisciplinary app
cations. Perhaps the widest class of models that admit s
Boolean-like representation is constituted by binary cellu
automata@1,2#. Specific applications include biological evo
lution at the levels of molecules@3–5#, cells @6#, individuals
@7#, and species@8–10#, as well as social and socioeconom
cal behavior@11,12#. Moreover, genetic algorithms are typ
cally applied to systems whose configuration is described
means of binary sequences@13#. These models may involve
large populations of interacting agents, each of them
scribed as a time-dependent array of bits, which requ
assigning an evolving density to each possible bin
sequence.

While the configuration space of a binary sequence
lengthL is naturally represented as the set of 2L vertices of
an L-dimensional hypercube, its visualization can be dis
pointingly difficult, even forL not very large. On the othe
hand, besides a quantitative characterization of the sys
dynamics through its collective properties, it is sometim
desirable to rely on a geometrical depiction where the
namics can be followed, for instance, on the compu
screen. The purpose of this paper is to present a metho
project the vertices of a hypercube of arbitrary dimens
onto a set of points in the plane, with the condition of p
serving ~as much as possible! the structure of the distanc
distribution on the hypercube. The motivation of this con
tion is that many dynamical processes depend on the H
ming distance—i.e., the number of different bits—betwe
binary sequences, and we require this feature to be well
resented by the Euclidean distance between the corresp
ing points in the plane projection.

Let hi j be the Hamming distance between verticesi and j
in the hypercube, anddi j the Euclidean distance betwee
pointsi andj in their plane projection. We define the functio

E5(
i , j

~di j 2hi j !
2, ~1!
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which characterizes how different are the distances betw
pairs of vertices and their projections. Our goal is to find
plane distribution that minimizesE, thus optimizing the
plane representation of the hypercube with respect to
distance between pairs. We have implemented a Monte C
method to stochastically approach the optimal solution—
configuration of minimum ‘‘energy’’E. Starting from a ran-
dom initial configuration on the plane, each point perform
walk with fixed step lengthr and directions chosen at ran
dom with uniform probability in@0,2p). Each step of this
walk produces a change in the configuration and, hence
the distancesdi j , which implies a variationDE in the en-
ergy. The new configuration is accepted with probability

p5H exp~2DE/T! if DE.0,

1 otherwise,
~2!

and rejected with probability 12p. The ‘‘temperature’’T
parametrizes this probability and allows the usual implem
tation of a simulated annealing, where the procedure st
with a high temperature that enables the system to explo
wide range in configuration space. Progressively, the te
perature is reduced and the system freezes in one of
many local minima of the energy, typically not far awa
from the global minimum if the annealing is made slow
enough.

We have carried out the described procedure both inte
tively, reducing by hand the temperature while monitori
the configuration of the system on the computer screen,
automatically, by implementing a programmed reduction
the temperature. Our experiments show that essentially
same state is achieved in almost all the realizations. T
implies that the energy landscape, while rugged, does
posses deep local minima that could capture the config
tion far from the optimal one. The typical final configuratio
for L510 (N51024 points! is shown in Fig. 1~a!. The self-
similarity of its structure is remarkable, since no such pro
erty is present in the hypercube. Despite the appeal that
self-similar projection may have, it turns out that such p
jection is not well suited for our purpose. Vertices that a
relatively near in the hypercube result rather far away in
projection. As an illustration, the first neighborsj (hi j 51) of
a given vertexi are shown in the figure. It is apparent that t
Euclidean distance of some of them from the reference v
©2003 The American Physical Society01-1
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tex is comparable with the size of the system. Moreov
many other vertices which should be farther away from v
tex i are, in fact, much closer.

One way to solve this difficulty is to modify the definitio
of E, such that near neighbors have more weight than dis
neighbors. In fact, the energy~1! overemphasizes the effec
of large distances. The weights can be chosen in a variet
ways, even as new tunable parameters in the optimiza
process@5#. We have implemented the following simple a
ternative, with fixed weights,

E5(
iÞ j

S di j 2hi j

hi j
D 2

. ~3!

The final configuration, which we will term ‘‘homogeneous
is shown in Fig. 1~b!. Neighbor vertices of a vertexi now
result mapped onto points that surround the pointi, which
makes this projection much more satisfying. Certainly, ho
ever, some vertices result mapped near the border of

FIG. 1. Two plane projections of a ten-dimensional hypercu
~a! using the energy defined in Eq.~1!; ~b! using the energy defined
in Eq. ~3!. Lines join the projections of a randomly chosen vertex
the hypercube and its nearest neighbors.
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circle, and the arrangement of their neighbors is slightly d
ferent than that of vertices mapped in the middle of the s
We analyze below how this affects the distribution of d
tances.

A good characterization of the projections, and a qua
tative way for comparing them, is the distribution of di
tances in each set. In the hypercube the distribution of
tances to a vertex is the same for every vertex, and in fac
analytically found to be a binomial distribution. In the two
dimensional projections there is a different distribution f
each point of the set. In Figs. 2~a! and 2~b!, we show nor-
malized distributions of distances for the self-similar and
homogeneous projections, respectively. In both figures,
black circles show the distribution of the distance to a
vertex in the hypercube. Even though the distances form
discrete set, we show lines connecting the points to ease
reading of the graph. The other three curves shown in e
plot correspond to the plane projections. The black squa
correspond to an average over all the points in the sets.
angles show averages performed on either the 10% of
points that form the external corona of the projection, or
10% of its more central points. For the points of these s
sets, still, all the distances to other points of the whole set
taken into account in the distributions.

The most immediate observation regarding Fig. 2 is
difference between the distributions in the two projectio
The self-similar projection displays rugged distributions th
reflect the hierarchical geometrical arrangement of
points. In the homogeneous projection, instead, the distr
tions are smooth, as in the hypercube. To this extent,
homogeneous projection can be said to represent more a
rately the distribution of distances present in the hypercu

:

f

FIG. 2. Distribution of distances in the hypercube, the pla
projections, and selected subsets of these:~a! self-similar; ~b! ho-
mogeneous.
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The distribution averaged over the whole set appears, h
ever, skewed towards smaller distances, with a maxim
around d53, instead of the most represented distanceh
55 of the hypercube. Interestingly, Fig. 2~b! shows that the
outer 10% points considerably correct this skew. In oth
words, a point near the border of the circular array of
projection has a distribution of distances to the other po
in the set, which is rather similar to the distribution of
vertex of the hypercube.

An appraisal of the plane projections of the hypercube
a dynamical context results from their application of a diff
sion process. Let us suppose that, at each time step, a ran
walker jumps from a vertex of the hypercube to one
neighbors with equal probability. The average distanceD
from the initial site, as a function of time, is shown in Fig
3~a! and 3~b! as black circles. The inset in both figures d
plays the same curve in double logarithmic scales, show
an initial behavior of the formD(t);t1/2, like in a regular
random walk in Euclidean space, followed by a saturation
the hypercube space is fully explored. The average dista
as measured on the plane is shown in Figs. 3~a! and 3~b! for
the self-similar and the homogeneous projections, resp
tively. As expected from the distance distribution discuss
above, the results for the plane projections depend
whether the initial point of the walker is at the border or
the center of the set. These two cases are shown in Figs.~a!
and 3~b! as triangles pointing upward and downward, resp
tively. From this dynamical point of view, interior point
behave equally bad in both projections. The most faith
representation of the process in a plane projection is the
given by one of the border points of the homogeneous
@Fig. 3~b!, up triangles#. Diffusion starting at these point
behaves similarly as from points of the hypercube, both
the short and in the long time regimes, as seen in the lin
and the logarithmic plots.

Our main goal of obtaining a sensible plane projection
the hypercube with the purpose of visualizing a dynami
process has been achieved, to an acceptable extent, b
homogeneous projection. Suppose that a dynamical phen
enon is taking place in a neighborhood of vertexP of a
hypercubical phase space. We need to build a homogen
-
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projection that maps vertexP to a point at the border of the
plane set. This is easily done by generating a projection
random and identifying one of the points at the border fir
Suppose that one such point isQ. Then, each vertexI of the
hypercube is mapped to a point in the plane projection a

I→~ I % P! % Q, ~4!

where% stands for the bitwise exclusive-OR ~XOR! operator.
The projection obtained in this way provides a nice pla
visualization substrate for the process.

FIG. 3. Average displacement as a function of time for diffusi
in the hypercube and its plane projections. For the plane pro
tions, diffusion starting from a point in the border and a point ne
the center are shown separately:~a! self-similar; ~b! homogeneous.
The straight lines in the insets have a slope of 1/2.
P.
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